
Force variations on particle induced by bubble-particle
collision

T. Hong, L.-S. Fan *, D.J. Lee

Department of Chemical Engineering, The Ohio State University, 140 West 19th Avenue, Columbus, Ohio 43210, USA

Received 8 September 1997; received in revised form 18 August 1998

Abstract

The force variation on a particle during a bubble-particle collision is investigated in two di�erent
liquid phases: (1) distilled water and (2) 80 wt% glycerin in water solution. The force variations on a
stationary particle due to the collision are experimentally measured and the collision processes are
visualized. A simple analytical model of the collision process is developed to account for the pressure
force on a particle induced by bubble±particle contact. To obtain physical insight into the bubble±
particle collision process, numerical simulations are performed. The computational study agrees closely
with the experimental results. Furthermore, the collision between a falling particle and a rising bubble is
simulated and compared to the stationary particle case. The simulation of the collision between a bubble
and a stationary particle reveals that the force on the particle oscillates: ®rst increases, then decreases,
and again increases. The magnitude of the force variation is comparable to the product of the
hydrostatic pressure di�erence across the bubble height and the cross-sectional area of the particle.
When the collision takes place in water, the pressure force predominates and the particle experiences
both upward and downward forces. When the collision takes place in the glycerin solution, both
pressure and viscous forces predominate and the force on the particle induced by the rising bubble is
always upward. If a particle is moving downward with a speed relatively faster than that of the rising
bubble, the particle experiences an upward drag force due to its downward motion before colliding with
a bubble. At the beginning of the collision, the upward force decreases greatly, and recovers quickly. At
the end of the collision process, the upward force increases signi®cantly due to the pressure and the
wake e�ect of the bubble. The magnitude of the force variation is comparable to the drag force on the
particle before the collision. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Three-phase ¯uidized systems are widely used in chemical and petrochemical industries (Fan,
1989). In a three-phase ¯uidized bed, bubble-particle interactions and their momentum transfer
are key factors contributing to the hydrodynamic behavior of the system. To quantify the
momentum transfer due to the bubble-particle interactions, it is necessary to understand the
fundamental mechanism underlying the collision process between a bubble and a particle.
Previously, the e�ect of particles in a gas±liquid system on the bubble size has been

investigated extensively by many researchers (Lee, 1965; Ostergaard, 1966; Bruce and Revel-
Chion, 1974; Lee et al., 1974; Muroyama and Fan, 1985). Further, studies of the bubble±
particle interactions have been carried out both experimentally and analytically (Henriksen and
Ostergaard, 1974; Chen and Fan, 1989a; Chen and Fan, 1989b). These studies emphasized the
mechanism of bubble breakage due to the particle collision.
Since the bubble±particle collision is not only an extremely rapid transient process, but also

involves a very small force variation, it is experimentally challenging to quantify the force
experienced by the particle during the collision process. An experimental method using an
atomic force microscope has been developed by many researchers (Ducker et al., 1990; Lin et
al., 1993; Tsao et al., 1993; Butt, 1994). An atomic force microscope can be used to measure a
very small force encountered in the particle; however, it is di�cult to measure the force in
rapid transient variations, such as the process of bubble±particle collision in liquid.
Computational ¯uid dynamics can be used to quantify the force in such a rapid transient
process. A computational study can provide the evolution of the detailed pressure and velocity
®elds around the bubble and the particle, thereby revealing physical insights into the collision
process.
In the present study, the force variation on a particle during a bubble±particle collision is

studied experimentally and analytically. Furthermore, numerical simulations are performed to
investigate the collision process under various conditions. Results from the analytical model
and the numerical simulation are compared with the experimental data. Physical mechanisms
underlying the bubble±particle collision process are discussed in light of the numerical
simulation.

2. Experimental setup

2.1. Experimental setup

A schematic diagram of the experimental apparatus is shown in Fig. 1. Experiments are
performed in a 15.24 cm ID cylindrical Plexiglas column. Two solutions are used as the liquid
phase to investigate the viscosity e�ect: (1) distilled water and (2) 80 wt% glycerin solution
with distilled water. The ¯uid viscosity is measured by a rotational viscometer (Fann series 35
viscometer). Spherical particles of 0.95 and 0.635 cm in diameter are used for the cases of
water and of the glycerin solution, respectively. The same size bubble of 1.2 cm in volume
equivalent diameter is injected for both cases. A video system with a recording speed of up to
240 pictures per s is employed to record the collision process.
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A microforce measurement system used by Zhu et al. (1994) is adopted in this study to
measure the force variation during the bubble±particle collision process. The particle is
connected to an electronic balance (Scientech, Model 202-004) through a rigid thin rod to
measure the force acting on the particle. The electronic balance has a sensitivity of 1 mg. The
analog output is converted to a digital signal through an A/D converter with 16-bit resolution
(National Instruments Data Acquisition Board, AT-MIO-16x) and is recorded by a PC. The
data sampling frequency of 3000 Hz is used throughout the experiments. It should be noted
that the frequency used in the experiment is higher than the manufacturer-suggested maximum
sampling frequency of the electronic balance. A great di�culty was encountered in searching
for a microforce balance with both high precision and short response time, and, as a
compromise, the present electronic balance is used. The net force on the particle is obtained by
subtracting the gravitational and buoyancy contributions from the total force measured by the
balance. The gravitational and buoyancy contributions are predetermined in the stationary
¯uid.
A hemispherical cup of 2 cm in diameter is used to generate a single bubble (Kumar et al.,

1992). Air is injected beneath the cup, which is located 5 cm above the bottom of the column,
through a stainless steel tube using a syringe to obtain precise volume control. A single bubble
is then generated by inverting the cup and releasing the trapped air. This single bubble
generation system keeps the disturbance in the ¯ow ®eld minimal and prevents satellite bubble

Fig. 1. Schematic description of the experimental apparatus.
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generation. The distance between the cup and the particle is great enough to nullify any e�ect
of the bubble generation process on the bubble±particle collision.

2.2. Results and discussion

De®ne F as the net force on the particle in the direction opposite to gravity after the
deduction of both the gravitational and the buoyancy forces. Fig. 2 shows the variation of F vs
time during the bubble±particle collision in distilled water. It is found that in water the impact
process on the particle can be divided into three stages: (1) an upward force in the early stage,
(2) a downward force in the middle stage, and (3) an upward force again at the late stage.
Fig. 3 shows the variation of F vs time in the case of 80 wt% glycerin solution. In contrast to
the case of water, it is observed in Fig. 3 that there is no downward force during the collision
process. There is a signi®cant increase in F at the early stage of the collision in the case of the
glycerin solution, followed by a decrease, and then another increase that lasts for a prolonged
time.
The result reveals a unique time variation of F during the bubble±particle collision process.

However, the experimental study alone is insu�cient to reveal precise quantitative results of F
during the collision process since both the force involved in the collision and the duration of
the force are very small. For the particle diameter, dp, and the volume equivalent bubble
diameter, db, at around 1 cm, the force involved during the collision is only on the order of
one hundred dynes. For such a small force, the microforce balance gives a poor signal to noise

Fig. 2. Experimentally obtained force variation on a particle (dp=0.95 cm) during the collision with a bubble
(db=1.2 cm) in distilled water.
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ratio. Moreover, the collision lasts only a fraction of a second for these particle and bubble
sizes, which results in very steep slopes in the force variation. In order to obtain a better
understanding of the collision process, a simple analytical model is developed.

3. Analytical study

3.1. Model formulation

The following assumptions are made in this analytical model: (1) the center of the particle is
®xed in space located on the central axis of the column, and the center of the bubble moves
along the central axis throughout the collision process. (2) The bubble reaches its terminal
velocity and is of spherical-cap shape. Further, the bubble rise velocity and the bubble shape,
which are determined from the empirical correlations (Fan and Tsuchiya, 1990), remain the
same throughout the collision process. (3) The ¯uid motion induced by the bubble motion and
the bubble±particle collision is negligible; thus, the particle experiences neither a pressure force
nor a friction force due to the liquid motion. (4) A hydrostatic pressure ®eld is induced by the
gravitational force, and the particle only experiences the pressure force during the collision. (5)
The pressure inside the bubble is uniform, and is equal to the hydrostatic pressure at the
bottom of the bubble. (6) The pressure on the bubble±particle contact area is equal to the

Fig. 3. Experimentally obtained force variation on a particle (dp=0.635 cm) during the collision with a bubble

(db=1.2 cm) in 80 wt% glycerin solution.
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pressure inside the bubble. (7) A thin liquid ®lm covers the particle during the collision; thus,
the surface tension force is neglected.
The pressure variation induced by the gravitational force inside the bubble is negligible

because the density of water is approximately one thousand times larger than that of air; thus,
the pressure inside the bubble is assumed to be uniform as stated in Assumption (5). There is
no pressure di�erence across the ¯at interface, i.e. the pressure in the gas phase is equal to the
pressure in the liquid phase across the gas±liquid interface on the ¯at bottom of the spherical-
cap bubble as noted in Assumption (5). Further, it is assumed that a thin liquid ®lm covers the
particle surface throughout the collision process because the dynamic contact angle on the
particle surface approaches zero degrees as the relative motion between the bubble and the
particle during the collision is very fast (Elliott and Riddiford, 1967).
Fig. 4 shows a schematic diagram of a bubble surrounding the middle portion of a particle.

The z-axis indicates the central axis of the column, and the direction of the gravitational
acceleration, g, is in the negative z direction. The point O is the center of the spherical particle.
Assuming the hydrostatic pressure to be zero at point O, the liquid pressure, p, on the particle
surface, except the surface area surrounded by the bubble, can be expressed as

p � p�a� � rgrp cos a �1�
where r is the ¯uid density; rp is the particle radius; and a is the angle measured from the
reverse direction of the central axis. Because of the axisymmetric nature of the system, there is
no horizontal component in the net force. The di�erential force, dF, in the vertical direction
can be expressed as

dF � p�a�cos a ds �2�

Fig. 4. Schematic description of geometric relationships for the analytical model.
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where ds is the band-shaped di�erential surface area of the particle, and can be expressed as

ds � 2pr2p sin a da: �3�
The particle surface is divided into three sections, above, within, and beneath the bubble, as
shown in Fig. 4. The net force on the particle, F, is the combined e�ect of the three forces F1,
F2, and F3 acting on the three sections of the particle surface. The force on each section of the
particle surface can be obtained by integrating Eq. (2) over the corresponding particle surface
area. F1 and F3 can be obtained from

F1

�a1
0

�rgrp cos a�cos a�2pr2p sin a da� � ÿ
2

3
pr3prg�cos3 a1 ÿ 1� �4�

and

F3 �
�p
a2
�rgrp cos a�cos a�2pr2p sin a d a� �

2

3
pr3prg�1� cos3 a2� �5�

where a1 and a2 are determined by the junction of the bubble and the particle. Based on
Assumption (5), the pressure on the particle surface in Section 2 (see Fig. 4) can be determined
by the horizontal level at the bottom of the bubble, zb

F2 �
�a2
a1
�rgzb�cos a�2pr2p sin a d a� � pr2prgzb�sin2 a2 ÿ sin2 a1�: �6�

Summation of Eqs. (4)±(6) yields

F1 � F2 � F3 � pr2prg zb�sin2 a2 ÿ sin2 a1� ÿ 2

3
rp�cos3 a1 ÿ cos3 a2 ÿ 2�

� �
: �7�

Finally, after the subtraction of the buoyancy force from Eq. (7), F can be written as

F � pr2prg zb�sin2 a2 ÿ sin2 a1� ÿ 2

3
rp�cos3 a1 ÿ cos3 a2�

� �
: �8�

For a given zb, based on Assumption (2), a1 and a2 can be determined from the geometrical
relations in Fig. 4; therefore, F is only a function of zb for a ®xed system. Note that zb can be
calculated from the bubble rise velocity and time as

zb � vbt �9�
where vb is the bubble rise velocity that can be determined from empirical correlation, e.g. Fan
and Tsuchiya (1990).

3.2. Results and discussion

For the case of water (dp=0.95 cm and db=1.2 cm), the force variation is obtained by
Eq. (8). The aspect ratio of a spherical-cap bubble and the bubble rise velocity is taken to
be 0.24 (Vakhrushev and Efremov, 1970) and 25 cm/s (Fan and Tsuchiya, 1990),
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respectively. Fig. 5 shows both the predicted and experimental results. The predicted force
variation closely follows the experimental result for the case of water except at the last
stage of the collision.
The force variation shown in Fig. 5 can be explained as follows. The hydrostatic pressure at

any point is determined by the corresponding z, and increases as the corresponding z decreases.
From Assumption (5), the pressure inside the bubble, pb, is higher than its surrounding liquid
pressure except at the bottom of the bubble where pb is equal to the liquid pressure. Therefore,
the bubble is a high-pressure zone compared with its surrounding liquid. When the bubble
passes around the particle, the pressure on the particle surface surrounded by the bubble
increases to pb. Meanwhile, from Assumption (3), the pressure distribution on the rest of the
particle surface remains unchanged, and is equal to the hydrostatic pressure distribution.
At the beginning of the collision, the bottom portion of the particle ®rst touches the bubble,

and the increase of the pressure on the bubble±particle contact area results in an upward force
on the particle. As the bubble rises, the bubble±particle contact area increases, which leads to a
continuous increase in the upward force. Just before the particle penetrates the bubble, the
upward force reaches a maximum. After the bottom of the particle is exposed to the liquid, the
bubble±particle contact area gradually shifts to the sides of the particle. As a consequence,
the upward force begins to decrease. As the bubble moves to the upper portion of the particle,
the high pressure on the bubble±particle contact area begins to push the particle downward.
As the bubble covers the entire top region of the particle, the downward force reaches a

Fig. 5. Analytical and experimental results of the force variation on a particle (dp=0.95 cm) during the collision
with a bubble (db=1.2 cm) in water.
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maximum. As the bubble rises away from the particle, the bubble±particle contact area
shrinks; thus, the downward force gradually decreases to zero when the bubble separates from
the particle. Fig. 5 shows that the magnitude of the variation of F is about twice that of the
product of the cross-sectional area of the particle and the hydrostatic pressure di�erence based
on the bubble height.
Although the analytical study provides helpful insights into the collision process, a

comparison with the experimental result (Fig. 5) shows that the amplitude of the predicted
force variation is smaller than that of the experimental result. Further, the experimental result
shows another upward force at the late stage of the collision process. The deformation of the
bubble shape and the e�ect of the liquid motion play a signi®cant role on F during the
collision process that is neglected in the analytical model.
Fig. 6 shows the force variations obtained experimentally and analytically in the glycerin

solution (using the aspect ratio of 0.24 and the bubble rise velocity of 23.6 cm/s). As shown in
the ®gure, the experimentally measured upward force is much larger than the analytical
prediction. There is no downward force during the entire collision process and the collision
process lasts much longer than predicted. In general, the analytical prediction oversimpli®es the
force variation behavior in the highly viscous liquid. To fully understand the behavior of F
variation during the bubble±particle collision, a comprehensive numerical simulation is to be
performed, which accounts for the pressure force, the viscous force, and the e�ects of the ¯uid
motion and the bubble deformation.

Fig. 6. Analytical and experimental results of the force variation on a particle (dp=0.635 cm) during the collision
with a bubble (db=1.2 cm) in 80 wt% glycerin solution.
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4. Numerical study

4.1. Numerical method

The successful tracking of the gas±liquid interface is crucial to a numerical study of the
system because the physical properties change drastically between phases. The volume of ¯uid
(VOF) method (Hirt and Nichols, 1981) is used in this study, which provides a simple and
economical technique to track the gas±liquid interface with reasonable accuracy and a
relatively small computer memory requirement. The VOF method has been successfully used to
predict the characteristics of single bubble rise, bubble and bubble±chain formation, and
bubble breakage (Tomiyama et al., 1993; Bugg and Rowe, 1993; Gracia-Briones et al., 1994;
Hong et al., 1996; Deitz, 1998). By tracking the movement of the gas±liquid interface, the VOF
method determines the location, the shape, the volume, and the inside pressure of the bubble.
No assumptions are made on the gas±liquid momentum transfer. The interaction is directly
simulated by changing the pressure distribution induced by the motion of the gas±liquid
interface. The factors a�ecting the gas±liquid interaction, such as surface tension and viscosity,
can be directly investigated. It should be noted that the computational grid has to be very ®ne
to provide su�cient cells to represent the bubble when using the VOF method.

4.1.1. Motion of liquid phase
In this computation, the Navier±Stokes equations are solved for the transient laminar

incompressible ¯ow. The continuity and the momentum equation of the liquid are

r �U � 0; �10�

@rU
@t
� r � �rUU� � ÿrp� mr2U� rg; �11�

where U is the velocity vector, t is time, and m is the viscosity. Eq. (11) is solved to provide the
velocity ®eld and the pressure distribution of the liquid phase.

4.1.2. Motion of bubble (gas±liquid interface)
De®ning f as the volume fraction of the liquid phase in a computational cell, f is equal to

one or zero if the liquid phase or the bubble, respectively, occupies the cell. Hence, the gas±
liquid interface can only exist in a cell in which f lies between zero and one. In the VOF
method, the movement of the gas±liquid interface is tracked as the f distribution changes.
From the mass conservation of the liquid phase, the time-dependent governing equation of f
can be obtained as

@f

@t
� ÿU � rf: �12�

At each time increment, the liquid velocity ®eld is computed. Eq. (12) is then used to update
the f distribution. The new location and shape of the gas±liquid interface are determined from
the renewed f distribution.
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Since the density of the liquid is a thousand times larger than that of the gas, the momentum
of the liquid phase is much higher than the gas momentum; thus, the gas motion inside the
bubble is neglected in this study. Furthermore, because the liquid viscosity is much larger than
that of the gas phase, it is assumed the friction drag on the gas±liquid interface is negligible;
thus, there is no liquid velocity gradient on the bubble surface. The bubble deformation
process is assumed to be isentropic (Champman and Plesset, 1971; Jensen, 1974), so that the
pressure inside the bubble can be related to its volume, v, by

pbv
g � constant �13�

where g is the ratio of the speci®c heats of air and is equal to 1.4.
Based on the bubble shape obtained from the f distribution, the surface curvature at any

point on the bubble surface can be determined. Thus, the pressure di�erence across the gas±
liquid interface, Dp, can be obtained from the Laplace±Young equation,

Dp � 2s
R

�14�

where s is the surface tension of the liquid phase and R is the radius of the bubble surface
curvature at a given point. From Eqs. (13) and (14), the pressure distribution on the liquid side
along the bubble surface is determined and then used as the boundary condition for solving
liquid momentum equations, Eq. (11), at the next time increment. Again, the f distribution, the
shape, the volume, and the pressure of the bubble can then be obtained from the new liquid
¯ow ®eld.
Given the pressure distribution and the velocity ®eld around the particle, the total force on

the particle, F, consisting of both pressure and viscous forces, can be obtained from

F �
I
s

ÿpn � i ds�
I
s

m
@U

@n
� ids �15�

where i is oriented normal to the particle surface.

4.1.3. Boundary and initial conditions
A non-slip boundary condition is used at the particle surface and at the column wall. An

axisymmetric condition is used at the central axis. Initially, the liquid phase is motionless and
the pressure distribution is the hydrostatic pressure ®eld induced by the gravitational ®eld. The
bubble is assumed to be of spherical shape, and pb is assumed to be equal to the liquid
hydrostatic pressure at the center of the bubble. The parameters used in the numerical
simulations are given in Table 1. As discussed above, it is assumed that a thin liquid ®lm
covers the particle throughout the collision. This assumption is applied in the simulation by
using a 908 contact angle at the particle surface, ac, and assuming there is no surface tension
force along the particle-bubble contact line.

4.1.4. Numerical arrangement
The center of the bubble rises along the central axis of the column toward the center of the

particle, and the bubble and the ¯ow are axisymmetric throughout the collision process. The
spherical-shaped particle is motionless or moves along the central axis of the column at a
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constant velocity throughout the collision process. The conservation equations are written in
cylindrical coordinates, and an axisymmetric pro®le of the cylindrical column is used as the
computational domain. The dimension of the grid is 33 � 100.
The ®nite di�erence method is used to solve the governing equations. The algorithm is

similar to that in the SOLA code (Hirt et al., 1975). The computation is performed on a
CRAY Y-MP8/864 supercomputer at the Ohio Supercomputer Center using the ¯uid dynamics
solver FLOW-3D developed by Flow Science, Inc. (Harper et al., 1991). It is noted that when
using the time marching algorithm, the time increment needs to be very small to correctly
simulate the physical process; hence, a large amount of computational time is involved. In the
present study, the time step is on the order of 10ÿ4 s which results in the computational time of
about 10 CRAY CPU h for a typical case study.

4.1.5. Code veri®cation
An air bubble rising at its terminal velocity is simulated. As shown in Table 2, cases (a) and

(b) represent studies in 80 wt% glycerin solution and in distilled water, respectively. In both
cases, the bubble shape and the ¯ow ®eld are assumed to be axisymmetric, and an
axisymmetric pro®le of a cylindrical column is used as the computational domain. The bubble
shape and the ¯ow pattern around the bubble are relatively stable in case (a), and are
oscillating in case (b). The oscillating phenomenon in case (b) is consistent with the
experimental observations. Table 2 shows comparisons of the computational results to
experimentally determined terminal rise velocities (Haberman and Morton, 1956), and the
di�erence between them is less than 20%. Furthermore, to check the in¯uence of the grid
density on the simulation, two di�erent grid systems (33 � 100 and 59 � 167) are used as
shown in Table 2. It is shown that the di�erence of the grid systems is very small. Using the
same numerical method, Hong et al. (1996) simulated the formation of a single-bubble chain

Table 1
Parameters used in the numerical simulation

r (g/cm3) m (g/cm-s) g (cm/s2) s (dyne/cm) ac

Glycerin solution 1.206 0.529 980 65.9 908
Distilled water 1.0 0.01 980 72.0 908

Table 2

Comparison of bubble rise velocities obtained by the numerical simulation with bubble rise velocities found in the
literature

Case (a) Case (b)

Liquid phase Glycerin solution Distilled water
db (cm) 1.2 1.2 0.8 0.8

Grid system 33 � 100 59 � 167 33 � 100 59 � 167
Computational result of bubble rise velocity (cm/s) 20.23 19.28 19.81 19.32
Bubble rise velocity (cm/s) obtained from Haberman and Morton (1956) 23.6 23.6 23.0 23.0
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and the bubble breakage due to a collision with a particle, and the simulation results agree
closely with the experimental visualization.
To examine the accuracy of the code for predicting the force on the particle, the ¯ow over a

single sphere is simulated under three conditions as given in Table 3. Table 3 shows that the
code predictions of drag coe�cients are satisfactory under the moderate and high Reynolds
numbers in comparison with empirical results by White (1974). However, a relatively large
discrepancy is shown under the low Reynolds number. Mainly, the discrepancy is caused by
the error the code su�ers when calculating the frictional drag on the sphere surface using the
velocity ®eld.

4.2. Results and discussion

4.2.1. In distilled water
Fig. 7 shows the computational result and the analytical model prediction of F on a particle

(dp=0.5 cm) during the collision with a bubble (db=0.8 cm) in water. The Reynolds number
based on particle size and bubble terminal velocity is 1000. The computed F has a high
frequency oscillation component. The high frequency oscillation is due to the ¯uctuation of pb.
The magnitude and frequency of the oscillation of the predicted pressure inside the bubble is
consistent with the experimental results from Vokurka (1990) and Jensen (1974). A similar air
bubble oscillation was also reported by another VOF simulation (Barkhudarov and Chin, 1994).
The force, F, consists of three terms: (1) the pressure force, Fp, generated by the pressure

distribution on the particle surface; (2) the friction force, Ff , originating from the shear stress
on the particle surface induced by the viscous ¯uid ¯owing over the particle surface; and (3)
the gravitational force. The simulation shows that during the entire collision period Ff is less
than 10% of Fp; therefore, the viscous e�ect is insigni®cant. It should be noted that the size of
the bubble and particle used in the experimental study are not equal to those used in the
computation. In the experiment, dp and db have to be larger than 0.95 and 1.2 cm, respectively,
so that during the bubble±particle collision, F is large enough to generate an e�ective signal to
noise ratio from the microforce balance. On the other hand, in the computation, there is a
maximum bubble size that the present code can handle. For an air bubble of db larger than
0.8 cm in water, there is a continuous tiny bubble shedding in the simulation, which results in
great di�culties in the convergence of solution. A qualitative comparison of Figs. 2 and 7

Table 3
Comparison of drag coe�cients for ¯ow passing a sphere from the numerical simulation with drag coe�cients

found in the literature

Condition 1 Condition 2 Condition 3

Liquid phase Glycerin solution Glycerin solution Distilled water
Particle diameter (cm) 0.635 0.635 0.5
Liquid velocity (cm/s) 20 70 20

Reynolds number 29.0 101.3 1000
Predicted drag coe�cient 1.29 0.87 0.55
Drag coe�cient from White (1974) 2.17 1.18 0.60

T. Hong et al. / International Journal of Multiphase Flow 25 (1999) 477±500 489



shows that the F variation obtained by computation has the same overall shape as the
experimental F variation over the entire collision process. Fig. 7 also shows that the analytical
result of the force variation agrees well with the computational result in a real time sequence
except the last stage of the collision, i.e. t>0.18 s. The magnitude of the F variation predicted
by the analytical model is smaller than that of the computational result because the analytical
model neglects the bubble shape deformation and the liquid motion.
Fig. 8(a) to (f) shows the simulated liquid velocity distributions and the pressure contours

around the particle at points A through F in Fig. 7. The liquid in front of the rising bubble is
pushed upward which results in a building up of a liquid pressure in front of the bubble. As
the bubble approaches the particle, the increased pressure zone and the upward ¯uid ¯ow
begin to exert an upward force on the bottom of the particle even before the contact is made.
When the bubble contacts the bottom of the particle, the pressure at the bubble±particle
contact area increases to the pressure of the bubble. As the size of the contact area increases, F
continuously increases and reaches its maximum value at point B. From point B to C, the
location of the high pressure contact area quickly shifts to the sides of the particle and
eventually to the upper portion of the particle, which results in the maximum downward force
at point C. From point C to D, the doughnut-shaped bubble recovers its shape. From point D
to E, the bubble is elongated and still in touch with the particle. Because the bubble rises
within the hydrostatic pressure ®eld induced by the gravitational force, the pressure of the
liquid surrounding the bubble and the pressure inside the bubble continuously decreases.
Therefore, the pressure at the bubble±particle contact area quickly decreases. A low-pressure

Fig. 7. Computational and analytical results of the force variation on a particle (dp=0.5 cm) during the collision

with a bubble (db=0.8 cm) in water.
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zone is thus formed at the top of the particle, which produces an upward force on the particle.
Consequently, F quickly increases to a local maximum, point E. After the bubble detaches
from the particle, F drops back to zero. A sequence of experimental images of the collision
process between a stationary particle (dp=0.5 cm) and a bubble (db=0.8 cm) is shown in Fig. 9
that is consistent with the simulation results.

Fig. 8. Simulated liquid velocity distribution and pressure contours around the particle at points A through F in

Fig. 7 (H and L represent high and low pressures, respectively).
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4.2.2. In glycerin solution

4.2.2.1. Stationary particle. Fig. 10 shows the computational result for the F variation during
the collision between a bubble (db=1.2 cm) and a particle (dp=0.5 cm) in 80 wt% glycerin sol-
ution. The Reynolds number based on the particle size and the bubble terminal velocity is 22.8.
Comparisons between Figs. 7 and 10 show that the pattern of the force variation is di�erent in
low and high viscous liquids, which is consistent with the experimental results in Figs. 2 and 3.
A comparison of Figs. 3 and 10 shows that the computational result qualitatively agrees with
the experimental result. However, the predicted maximum value of F is less than that of the

Fig. 9. Visualization of the collision sequence of a stationary particle (dp=0.5 cm) and a bubble (db=0.8 cm) in
water at: (a) t= 0; (b) t= 0.0833; (c) t= 0.121; (d) t= 0.154; and (e) t = 0.179 s.
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experimental results. This deviation is mainly due to the calculation of the friction force, Ff , as
discussed earlier. As in the case of water, the ¯uctuation of F is induced by the oscillation of
pb. Fig. 10 shows that there are two maxima in F during the collision; no downward force pre-
sent; and the particle gains upward momentum overall. The predicted F variation from the
analytical model follows that of the computation only in the early stage, and the maximum F
obtained by the analytical model is lower than that from the computation. The major reason
for the discrepancy is because the viscous force, which the analytical model does not count for,
plays an important role in this case.
Fig. 11(a)±(d) presents the ¯ow ®elds and the pressure distributions around the particle at

points A through D in Fig. 10. As discussed for the case of water, when the bubble approaches
the particle from below, the increased pressure zone and the liquid motion at the roof of
bubble begin to produce an increasing upward force on the particle. Due to the high liquid
viscosity, the upward liquid motion produces signi®cant shear stress on the particle surface,
which is much greater than that in the case of water. Therefore, there is a signi®cant increase
in F even before the bubble contacts the particle. This upward force gradually reaches a
maximum value at point A. It is noted that when the bubble covers the bottom of the particle,
Ff is greatly reduced because the shear stress becomes zero in the bubble±particle contact area.
From point A to B, the bubble±particle contact area quickly shifts from the bottom of the
particle to its side, which results in a sharp decrease of F down to a minimum around point B.
After the particle penetrates the bubble, from point B to C, the area exposed to the bubble
wake at the bottom of the particle increases. The upward liquid motion in the bubble wake

Fig. 10. Computational and analytical results of the force variation on a stationary particle (dp=0.5 cm) during the
collision with a bubble (db=1.2 cm) in 80 wt% glycerin solution.
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Fig. 11. Simulated liquid velocity distribution and pressure contours around the particle at points A through D in

Fig. 10 (H and L represent high and low pressures, respectively).
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creates an increasing upward shear stress force on the particle that overshadows the downward
pressure force generated in the bubble±particle contact area. Thus, there is no negative F in the
entire collision process. As the bubble rises, the surface area of the particle exposed to the
bubble wake continuously increases until the entire particle is within the bubble wake at point
C, where F reaches a local maximum. As the distance between the bubble and the particle
increases, the intensity of the bubble wake around the particle decreases and F gradually
decreases to zero. It is observed that the doughnut-shaped bubble detaches from the particle
surface and keeps rising as doughnut-shape instead of reforming immediately as in the case of
water. Compared to the case of water, the contact area of bubble and particle on the upper
portion of the particle surface is greatly reduced, which leads to a much smaller downward
force. There is no bubble±particle contact area on the top of the particle; therefore, the second
peak of F is produced only by the wake of the bubble. Fig. 12 presents an experimental
demonstration of the collision process between a stationary particle (dp=0.5 cm) and a bubble
(db=1.2 cm). The visualization agrees closely with the computational results shown in Fig. 11.

4.2.2.2. Moving particle. To obtain a further understanding of the bubble±particle interaction
during the collision, a numerical simulation is conducted for the collision process of a rising
bubble (db=1.2 cm) with a falling particle (dp=0.635 cm). The particle is assumed to move
downward along the central axis of the cylindrical column at a speed wp of 50 cm/s. The Rey-
nolds number based on the particle size and bubble±particle relative velocity is about 101.
Because of the code limitation, the particle is assumed to move at a constant velocity wp

throughout the collision. The motion of the particle is simulated by ®xing the particle in the
computational domain and superimposing the liquid phase with a velocity, wl, of 50 cm/s.
Fig. 13 shows the computational result of the force variation, and Fig. 14(a)±(e) shows the

velocity ®eld and the pressure distribution around the particle at points A through E.
Di�erently from other cases, Fig. 13 shows a large decrease in F at the early stage of the
collision. The pressure and the velocity distributions induced by the relative motion of the
particle and the liquid exist before the collision occurs. The pressure and velocity ®elds
generate an initial upward force, Fo, on the particle. A high pressure point ( p= po) is located
at the bottom of the particle and a high pressure zone surrounds this point. Meanwhile, a low-
pressure zone exists around the top of the particle. Fo consists of two forces: a form drag
force, Fp, produced by the high and the low pressure zone; and a friction drag force, Ff ,
induced by the high viscous liquid ¯owing over the particle surface at wl.

When the bubble ®rst touches the particle, the pressure at the bottom of the particle drops
to pb. Note that pb is much lower than po. As a result, Fp suddenly decreases and consequently
F decreases drastically. Because pb decreases as the bubble rises, the pressure around the
bottom of the particle continuously decreases. Meanwhile, Ff also decreases as the contact
area, where the shear stress is zero, increases. As a combined result, F reaches a minimum at
point B. After the particle penetrates the bubble, the bottom of the particle is exposed to the
wake of the bubble. The pressure at the bottom of the particle quickly recovers, and thus F
increases. As the bubble separates from the particle, the entire particle falls within the bubble
wake where the upward liquid velocity is higher than wl. Both Ff and Fp, and therefore F,
reach maxima as shown at point C. Since the distance between the moving particle and the
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bubble increases rapidly after separation, the in¯uence of the bubble wake dissipates quickly,
and therefore, F quickly decreases to its initial value.
In Fig. 13, the ¯uctuation of F is again the result of the oscillation of pb. After the particle

penetrates the bubble, there is a strong shear layer ¯ow around the inside edge of the bubble,
which results in the elongation of the bubble and generates a series of tiny bubbles as seen in
Fig. 14(d). Each tiny bubble separation results a large oscillation of pb. The oscillation causes
the large magnitude high frequency ¯uctuations of F at the last stage of the collision process.
Based on the force variation of Fig. 13, it can be obtained with a steel ball that the downward
velocity of the particle is reduced by 3.6% after the collision.

Fig. 12. Visualization of the collision sequence of a stationary particle (dp=0.5 cm) and a bubble (db=1.2 cm) in 80
wt% glycerin solution at: (a) t= 0; (b) t= 0.0708; (c) t= 0.0875; (d) t= 0.150; and (e) t= 0.158 s.
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Because of the limitation of the force measuring system, F is not measured experimentally on
the moving particle. Fig. 15 shows experimental images of the bubble±particle collision process
in 80 wt% glycerin solution, and the ®gure agrees closely with the simulation result of the dual
movement collision sequence shown in Fig. 14.

5. Concluding remarks

The force variation on a particle during a bubble±particle collision is measured
experimentally. An analytical model is developed to account for the bubble pressure e�ects
during the collision. Furthermore, numerical simulations are conducted under three conditions.
The predictions agree well with the experimental observations. The computational results
provide detailed velocity ®elds and pressure distributions around the bubble and the particle as
well as velocity and pressure variations with respect to time over the entire collision process.
When a bubble collides with a stationary particle, the force on the particle ®rst increases,

then decreases, and again increases. The magnitude of the force variation is comparable to the
product of the di�erence of the hydrostatic pressure based on the bubble height and the cross-
sectional area of the particle. If the collision takes place in water, the pressure force
predominates and the viscous force can be neglected. The particle experiences both upward and
downward forces during the collision process. On the other hand, if the collision takes place in

Fig. 13. Computational result of the force variation on the moving particle (dp=0.635 cm, wp=50 cm/s) during the
collision with a bubble (db=1.2 cm) in 80 wt% glycerin solution.
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80 wt% glycerin solution, both the pressure force and the viscous force predominate and the
force on the particle is upward throughout the collision.
When a bubble collides with a falling particle, the particle experiences an initial upward

force before the collision. If the speed of the particle is relatively large compared with the

Fig. 14. Simulated liquid velocity distribution and pressure contours around the moving particle at points A
through E in Fig. 13 (H and L represent high and low pressures, respectively).
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bubble rise velocity, there is a great decrease in the upward force on the particle in the early
stage of the collision, followed by a quick recovery and a signi®cant increase in the upward
force due to the pressure and the wake e�ect of the bubble. The magnitude of the force
variation is of the same order as the drag force on the particle before collision.
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